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Abstract
Introduction: T﻿he aim of this study was to assess whether integrating selected ultrasound features into 
a convolutional neural network improves its ability to differentiate benign from malignant thyroid nodules. 
Material and methods: A total of 242 patients (196 women, 46 men) with thyroid lesions were included in 
the study. All patients underwent surgical treatment and histopathological analysis. Thyroid ultrasonog-
raphy was also performed for all participants. Images were recorded in DICOM and AVI formats, and ar-
chived in a local database. Thyroid lesions were assessed according to the EU-TIRADS classification. Con-
volutional neural network models were developed using established architectures, including DenseNet 
and VGG16, as well as custom-designed models tailored to the dataset. Hybrid models were created by 
incorporating selected ultrasound features into these architectures as additional inputs. Performance was 
compared between the baseline convolutional neural network models and their feature-supported hybrid 
counterparts. Results: Model performance was evaluated using several metrics, including sensitivity and 
area under the ROC curve. Baseline convolutional neural network models served as the reference, while 
hybrid variants included structured ultrasound features. The VGG model showed a sensitivity of 0.78, 
and DenseNet achieved a sensitivity of 0.80 with an AUC of 0.84, demonstrating low variability. Inception 
models performed similarly, with balanced positive predictive value (PPV) (0.83) and negative predictive 
value (NPV) (0.74). Custom models also reached AUC values over 0.80. Selected ultrasonography features 
improved AUC by up to 7%, with additional gains in sensitivity and NPV. Conclusions: Eight baseline 
convolutional neural network models used to differentiate benign from malignant thyroid nodules were 
enhanced by incorporating five expert-assessed ultrasound features. This hybrid approach improved clas-
sification performance across all models, yielding an average AUC increase of approximately 7%.
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Introduction

The incidence of thyroid cancer has been steadily increasing in many 
countries, including Poland. According to the National Cancer Reg-
istry, a total of 5,012 new cases were reported in 2022, of which 4,107 
were among women(1). The key diagnostic procedures continue to be 
high-resolution ultrasonography and fine-needle aspiration biopsy(2).

In recent years, multiple ultrasound-based risk stratification sys-
tems have been proposed, including ACR-TIRADS, (American Col-
lege of Radiology Thyroid Imaging Reporting and Data System),  
EU-TIRADS (European Thyroid Imaging Reporting and Data Sys-
tem), and K-TIRADS (Korean Thyroid Imaging Reporting and Data 
System), all designed to improve malignancy risk assessment of thy-

roid nodules(3–5). These systems have contributed to improved diag-
nostic accuracy; however, notable interobserver variability persists, 
particularly in determining which nodules should undergo biopsy 
based on imaging features and size criteria(6).

A  meta-analysis comparing EU-TIRADS, ACR-TIRADS, and  
K-TIRADS reported sensitivities ranging from 0.68 to 0.82, and 
specificities between 0.71 and 0.81. The analysis also included  
S-Detect, a commercially available system based on K-TIRADS that 
classifies nodules as probably benign or probably malignant. Its sen-
sitivity and specificity (0.73 and 0.78, respectively) did not differ sig-
nificantly from those of classifications performed by radiologists(7). 
S-Detect has demonstrated diagnostic utility for both junior and 
experienced radiologists.
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Several studies and meta-analyses have also evaluated custom soft-
ware based on machine learning and convolutional neural networks, 
reporting diagnostic performance comparable to that of expert as-
sessment, with area under the curve values ranging from 0.76 to 
0.98(8).

Convolutional Neural Networks (CNNs) are a class of deep learn-
ing models designed to automatically extract features from mul-
tidimensional data such as images, sound, or video. A  CNN is 
composed of multiple layers that progressively extract and learn hi-
erarchical features from input images. Typical architectures include 
convolutional layers for feature detection, pooling layers for spatial 
downsampling, dropout layers to reduce overfitting, and flatten lay-
ers that convert multidimensional outputs into a format suitable for 
fully connected classification layers. This layered structure enables 
CNNs to capture both low-level textures and high-level semantic 
patterns essential for accurate image classification. A diagram of the 
CNN network, indicating individual components, is presented in 
Fig. 1. CNN models are widely used in medical imaging tasks such 
as breast cancer classification, thyroid nodules examination, or skin 
cancer detection(9–12). 

Despite the promising diagnostic performance of CNNs in thyroid 
cancer classification based on ultrasound imaging, these models 
typically operate in isolation from structured clinical input. In rou-
tine practice, diagnosticians evaluate a range of sonographic fea-
tures, such as echogenicity, margins, and calcifications, which are 
not always explicitly utilized by data-driven models.

The aim of this study was to evaluate whether incorporating selected 
ultrasound features, as assessed by experienced diagnosticians, into 
a CNN could improve diagnostic performance. It was hypothesized 
that combining image-based deep learning with structured seman-
tic features would enhance model accuracy in differentiating malig-
nant from benign thyroid nodules.

Materials and methods

A total of 242 patients (196 women, 46 men) with focal thyroid le-
sions were included in the study. All patients (n = 242) underwent 
surgical treatment at the Department of Oncological Endocrinology 
and Nuclear Medicine, National Institute of Oncology, Warsaw. The 
study was approved by the local institutional review board (decision 
number: 22/2024). Participants met the following inclusion criteria:
•	 age ≥18 years;
•	 presence of a focal lesion within the thyroid;
•	 qualification for surgical treatment based on fine-needle aspira-

tion biopsy (FNAB) classified as Bethesda category III–VI; or
•	 for Bethesda category II, the presence of clinical symptoms such 

as dysphagia or dyspnea.
No focal thyroid lesion were excluded.

Ultrasound examination

All patients underwent thyroid ultrasound using a premium-class sys-
tem (Philips EpiQ 5, Bothell, DC, USA) equipped with a linear trans-
ducer (eL18-4, frequency range 2–22 MHz). Images were recorded 
in Digital Imaging and Communications in Medicine (DICOM) and 
Audio Video Interleave (AVI) formats and archived in a local database.

Morphological features of the focal lesions were evaluated accord-
ing to the EU-TIRADS classification. The following sonographic pa-
rameters were assessed: echogenicity, echotexture, shape, margins, 
presence of microcalcifications, vascularity, and composition.

Ultrasound examinations were performed by two experienced ultra-
sonographers, each with over 10 years of experience in thyroid diag-
nostics. Initially, images were reviewed independently. Subsequently, 
all cases were re-evaluated jointly. In approximately 10% of discor-
dant cases, diagnostic consensus was achieved through discussion.

Fig. 1. CNN model building blocks. Source: own study
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Patient characteristics

Postoperative histopathological analysis was performed on all 242 
focal lesions. Of these, 139 were malignant (113 women, 26 men; 
mean age: 50 ± 14 years), and 103 were benign (83 women, 20 men; 
mean age: 48 ± 14 years).

Patients with malignant tumors underwent surgical treatment, ei-
ther total thyroidectomy or lobectomy with isthmectomy. Central 
neck compartment lymphadenectomy was performed where clini-
cally indicated. The extent of surgery was determined by the on-
cological surgeon based on ultrasound findings, FNAB results, and 
patient symptoms. In the malignant group, EU-TIRADS category 
5 was predominant (n = 118; 85%), with fewer lesions classified as 
EU-TIRADS 4 (n  =  14; 10%) and EU-TIRADS 3 (n = 7; 5%). In 
the benign group, the distribution was more balanced: EU-TIRADS 
5 – n = 33 (32%), EU-TIRADS 4 – n = 36 (35%), EU-TIRADS 3 – 
n = 34 (33%).

Approach

In this study, we employed commonly used CNN architectures 
and also designed our own CNN models. We verified predefined 
architectures, such as Visual Geometry Group (VGG), which uses 
deep stacks of convolutional layers with small filters to capture fine-
grained image details, DenseNet (Densely Connected Convolutional 
Network), which enhances feature propagation by connecting each 
layer to every other layer, reducing redundancy and improving gra-
dient flow, and Deep Inception Dense CNN (DIDC), which incorpo-
rates the inception mechanism. Moreover, we developed three deep 
networks from scratch (marked as cnn1, cnn2, and cnn3). These 
custom models differ in the number of convolutional blocks and the 
number and size of convolutional layers within each block.

Furthermore, to enhance classification performance, we extended 
the CNN models by incorporating additional binary ultrasound 
features provided by a medical expert. A total of 29  features, rep-
resenting clinically relevant characteristics of thyroid nodules, were 
combined with the image-based outputs of the CNN. These features 

included echogenicity, nodule shape, margin characteristics, vascu-
larity, composition, presence of calcifications, and other parameters 
commonly used in thyroid risk stratification systems. 

The extended hybrid models were implemented by extending the 
CNN architecture with a parallel branch that processes the selected 
tabular features and merges them with the CNN output prior to the 
final classification layer. 

To determine the quality of models, we evaluated sensitivity, 
specificity (true negative rate (TNR)), positive predictive value 
(PPV), negative predictive value (NPV), and area under the curve 
(AUC) metrics. For each metric, we calculated the mean, standard 
deviation, and 95% confidence intervals. We used 20 iterations 
for the cross-validation of each model, using a random sampling 
method(13).

Data preparation process

We utilized 479 images (278 malignant and 201 benign) from 242 
patients. For each image, we manually selected the region of interest 
(the lesion area). Then we extracted this part from the full ultra-
sound image (Fig. 2). The annotation was performed by an experi-
enced radiologist. All images were resized to 140×140 pixels to en-
sure compatibility with the input requirements of the specific CNN.

The dataset was split into 75% for training,15% for validation, and 
10% for testing model performance.

Results

Base models

The performance metrics for all tested CNN models are listed in Ta-
ble 1. The table presents the baseline models that serve as reference 
points, as well as the extended (hybrid) models (marked as H), used 
for evaluating the impact of integrating structured clinical features 
with the CNN models.

Fig. 2. Sample US images of a thyroid nodule from two planes. Source: own study
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Among the predefined base model architectures, VGG class model 
achieved around 0.78 sensitivity, indicating strong detection of ma-
lignant cases, but a relatively low NPV (0.70), suggesting that it may 
struggle to correctly identify benign cases. The DenseNet model 
achieved 0.80 sensitivity with relatively low variance (0.06). An AUC 
of 0.84 reflects reliable classification performance. The inception ar-
chitecture (DIDC) exhibits strong sensitivity (0.80), with balanced 
PPV (0.83) and NPV (0.74). Our custom models also showed con-
sistent performance with good AUC scores (over 0.80). 

Extended hybrid models

Table 2 presents AUC improvement rates achieved when using the 
hybrid models in comparison with the base models. 

The hybrid models include US features. The Pearson–Matthews cor-
relation coefficient between these features is presented, including 
the dependencies on the TIRADS category and the occurrence of 
thyroid cancer (Fig. 3).

Color intensity represents correlation strength, with red indicating 
positive and blue indicating negative correlations. The cancer vari-
able reveals the strongest correlations with specific nodule features. 

To identify the most informative features, we computed feature im-
portance scores. The calculation was performed using a random 
forest algorithm. Importance was computed as the mean of accu-
mulation of the impurity decrease within each tree in random forest 
(Mean Decrease Impurity − MDI measure). Based on this analysis, 
the top five most important features were selected and used as auxil-
iary inputs to the CNN models (Fig. 4). These included microlobu-
lated margins, deeply hypoechoic echogenicity, ill-defined margins, 
isoechogenic appearance, and the presence of microcalcifications. 
The presence (or absence) of these characteristics is commonly rec-
ognized by clinicians as indicators of malignancy risk in thyroid 
nodules. The frequency of occurrence of these features, divided into 
malignant and benign nodules, is also presented (Tab. 3).

The hybrid models were implemented by extending the CNN ar-
chitecture with a parallel branch that processes the selected tabular 

features and merges them with the CNN output before the final clas-
sification layer. Incorporating the selected ultrasound features led to 
consistent improvements across all model architectures. On average 
(for all models), sensitivity, PPV, specificity, and AUC increased by 
7% (each measure).

Discussion

Our study reinforces the findings of previous research demonstrating 
that deep learning algorithms can achieve reliable diagnostic perfor-
mance for relatively small sample sizes. In this study, we compared 
the quality of CNN models with hybrid models supported by selected 
US features. The highest sensitivity (0.89) was observed in the hybrid 
DenseNet model, suggesting its value in minimizing false negatives. 
The cnn3(H) model demonstrated balanced performance (sensitivity 
0.85, PPV 0.92, NPV 0.79, AUC 0.89). Most of our models exceeded the 
AUC threshold of 0.8, suggesting robustness and operational stability.

For context, Lee et al. reported an AUC of up to 0.90 based on 5,575 
images, using VGG models and a transfer learning approach, while 
Li et al. obtained an AUC ranging from 0.90 to 0.95, depending on 
the dataset(14–15). Despite a smaller sample size, our models yielded 
comparable diagnostic performance. 

Moreover, there are studies proving that AI systems may exceed 
expert-level sensitivity. Lai et al. showed that the InceptionV3, 

Tab. 1. Summary of model results. Models using US features are marked as H (hybrid). Source: own study

Model Recall Recall CI PPV PPV CI NPV NPV CI TNR TNR CI

VGG16 0.78 ± 0.12 (0.64, 092) 0.75 ± 0.06 (0.59, 0.91) 0.70 ± 0.09 (0.50, 0.89) 0.63 ± 0.09 (0.43, 0.84)

VGG16 (H) 0.85 ± 0.10 (0.73, 096) 0.80 ± 0.05 (0.72, 0.96) 0.77 ± 0.13 (0.63, 0.94) 0.68 ± 0.06 (0.55, 0.85)

denseNet121 0.80 ± 0.06 (0.55, 0.87) 0.88 ± 0.07 (0.68, 0.96) 0.73 ± 0.05 (0.54, 0.92) 0.83 ± 0.08 (0.66, 0.98)

denseNet121 (H) 0.89 ± 0.07 (0.75, 093) 0.92 ± 0.08 (0.77, 0.98) 0.75 ± 0.07 (0.65, 0.86) 0.84 ± 0.11 (0.71, 0.96)

DIDC 0.80 ± 0.11 (0.56, 0.88) 0.83 ± 0.07 (0.64, 0.94) 0.74 ± 0.11 (0.55, 0.92) 0.77 ± 0.13 (0.59, 0.95)

DIDC (H) 0.85 ± 0.07 (0.62, 0.89) 0.89 ± 0.08 (0.69, 0.97) 0.77 ± 0.05 (0.61, 0.93) 0.81 ± 0.07 (0.65, 0.94)

cnn1 0.80 ± 0.09 (0.58, 0.90) 0.81 ± 0.08 (0.63, 0.94) 0.75 ± 0.08 (0.56, 0.93) 0.73 ± 0.08 (0.55, 0.92)

cnn1 (H) 0.85 ± 0.11 (0.73, 0.96) 0.85 ± 0.08 (0.72, 0.96) 0.79 ± 0.14 (0.63, 0.94) 0.78 ± 0.06 (0.61, 0.94)

cnn2 0.74 ± 0.07 (0.57, 0.89) 0.87 ± 0.06 (0.69, 0.97) 0.68 ± 0.07 (0.49, 0.87) 0.82 ± 0.09 (0.65, 0.97)

cnn2 (H) 0.78 ± 0.10 (0.64, 0.92) 0.92 ± 0.07 (0.82, 1.00) 0.74 ± 0.09 (0.56, 0.90) 0.89 ± 0.08 (0.77, 1.0)

cnn3 0.76 ± 0.09 (0.59, 0.89) 0.88 ± 0.07 (0.70, 0.96) 0.70 ± 0.11 (0.51, 0.87) 0.83 ± 0.07 (0.67, 0.96)

cnn3 (H) 0.85 ± 0.08 (0.73, 0.97) 0.92 ± 0.03 (0.83, 1.00) 0.79 ± 0.06 (0.61, 0.96) 0.87 ± 0.06 (0.73, 1.0)

Tab. 2. Comparison between base and hybrid models. Source: own study

 
AUC AUC 

improvementBase model Hybrid model

VGG16 0.73 ± 0.03 0.81 ± 0.05 11%

denseNet121 0.84 ± 0.04 0.89 ± 0.06 6%

DIDC 0.80 ± 0.06 0.84 ± 0.04 5%

cnn1 0.80 ± 0.02 0.84 ± 0.01 5%

cnn2 0.81 ± 0.02 0.87 ± 0.02 7%

cnn3 0.83 ± 0.03 0.89 ± 0.02 7%
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DenseNet121, and ResNet50 models achieved AUC values between 
0.85 and 0.86, surpassing a senior radiologist (AUC 0.82), while 
their data fusion model reached an AUC of 0.88(16). A similar ap-
proach was reported by Peng et al., who showed that the ThyNet 
model achieved an AUC of 0.92, compared to radiologists (0.84; 
p  <0.0001), and its implementation reduced unnecessary biopsies 
from 61.9% to 35.2%, while the proportion of missed malignancies 
decreased from 18.9% to 17.0%(17). In the study by Namsena et al., 
the CNN system achieved a  sensitivity of 0.80 versus 0.40 for the 
radiologist (p = 0.043), with comparable specificity(18). In our cohort, 
the cnn3 model (AUC 0.85, PPV 0.92) also demonstrated potential 
clinical utility as a decision-support tool.

From a clinical perspective, AI should be viewed as an adjunct rather 
than a replacement for radiologists. Tong et al. found that an AI-op-
timized workflow reduced assessment time for experienced radiolo-

gists without compromising accuracy (sensitivity: 0.91–1.00, speci-
ficity 0.94–0.98), while less experienced practitioners benefited more 
from a full-AI strategy(19). According to Zhou et al., AI achieved diag-
nostic accuracy comparable to FNAB combined with BRAF^V600E 
testing, including in nodules with indeterminate cytology (Bethesda 
III/IV)(20). The performance of our cnn3 or DenseNet models may 
likewise support decision-making regarding fine-needle aspiration 
biopsy (FNAB), especially among junior clinicians.

An additional focus of our study was the identification of sonograph-
ic features most strongly associated with malignancy risk. As shown 
in Fig. 4, the presence of deep hypoechogenicity, microcalcifications, 
and ill-defined margins correlated significantly with thyroid carci-
noma. These findings are consistent with existing literature and rep-
resent high-risk features underpinning automated risk stratification 
systems in modified TI-RADS frameworks. For example, Wu et al. 
demonstrated that deep learning enhanced the differentiation of in-
termediate- and high-risk lesions (TR4 and TR5) within the ACR 
TI-RADS system, achieving an AUC of up to 0.90 with a significant 
improvement in sensitivity(21). Similarly, Wang et al. reported that 
a hybrid model combining ResNet50 and XGBoost achieved higher 
diagnostic accuracy (76.77%) compared to radiologists (68.38%), 
with microcalcifications identified as the most predictive feature(22).

The adaptability of AI to local ultrasound classification systems is 
noteworthy. Li et al. showed that modified ACR TI-RADS variants 
(mACR, mAI) improved specificity, accuracy, and AUC, thereby 

Fig. 3. Correlation matrix for US features. Source: own study

Tab. 3. Number of nodules with specific features. Source: own study

Feature All Malignant Benign

Microlobulated margins 33 28 5

Markedly hypoechoic 85 72 13

Isoechoic 45 7 38

Ill-defined margins 74 57 17

Microcalcifications 46 42 4
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reducing unnecessary biopsies without compromising sensitivity(23). 
Cui et al. confirmed that AI TI-RADS resulted in fewer unnecessary 
biopsies (41% vs. 47.8%) and fewer missed cancers (22.8% vs. 27.5%; 
p <0.05) compared to the standard ACR TI-RADS(24).

A more advanced strategy was proposed by Li et al., who introduced 
a multi-modal approach, combining machine learning models with 
CNN-based image analysis(25). Their results showed that machine 
learning models had an AUC of 0.85, while imaging models based on 
deep feature extraction reached an AUC of 0.83, and the hybrid mod-
el yielded an AUC of 0.87(25). A feature-based approach was also used 
by Yao et al., combining CNN models with specific US features(26). 
In this case, the features were not indicated by the diagnostician, 
but provided by other AI models, specialized in identifying these 
particular features, and the AUC result was 0.88(26). The advantages 
of using US features were also emphasized by Gomes Ataide et al., 
who obtained a sensitivity of 0.92 and a specificity of 0.91, based 
solely on eleven selected US features(27).

Despite the promising results, this study has several limitations. 
First, the data are from a single center, which may affect the gen-
eralizability of the results. Second, the lack of integration of clinical 
and molecular data limits the ability to fully stratify patient risk. Ad-
ditionally, despite the use of cross-validation, the size of the dataset 
was smaller than in multicenter studies, which may affect the vari-
ability of the results. Finally, the models were not tested in a live 
clinical setting, which should be the subject of further studies.

Conclusions

We extended eight baseline CNN models by integrating five se-
lected ultrasound features which were externally assessed by expe-
rienced diagnosticians. This hybrid approach aimed to combine the 
strengths of deep learning with clinically relevant semantic input. 
Across all models, the inclusion of ultrasound features led to a con-
sistent improvement in classification performance, yielding an aver-
age increase in AUC of approximately 7%.
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